terça-feira, 8 de janeiro de 2019






+

x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




+
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


onde
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




Em física, a gravidade quântica canônicagravidade canônica ou relatividade quântica canônica é uma tentativa de quantizar a formulacão canônica da relatividade geral. É uma formulação hamiltoniana da Teoria Geral da Relatividade de Einstein.
A teoria básica foi descrita por Bryce DeWitt em um articulo formal em 1967[1], baseando-se em um trabalho prévio de Peter G. Bergmann,[2]usando as chamadas técnicas de quantização canônica para sistemas hamiltonianos limitados inventadas por P. A. M. Dirac.[3] O enfoque de Dirac permite a quantização de sistemas que incluem simetrias de gauge usando técnicas hamiltonianas em uma eleição de gauge fixa. Novos enfoques, baseados em parte no trabalho de DeWitt e Dirac, incluem o estado de Hartle-Hawking, o cálculo de Regge, a equação de Wheeler-DeWitt e a gravidade quântica em loop.
A quantização se baseia na decomposição do tensor métrico tal como segue,
onde a soma dos índices repetidos é implícita, o índice 0 indica tempo , os índices gregos tomam todos los valores 0,...,3 e os índices latinos tomam os valores especiais 1,...3. A função  se chama a função lapso e as funções  se chamam funções shift. Os índices espaciais aumentam e decrescem usando a métrica espacial  e sua inversa  e , onde  é o delta de Kronecker. Com esta decomposição, a lagrangiana de Einstein-Hilbert se converte em derivadas totais,
onde  é a curvatura escalar espacial calculada com respeito à métrica de Riemann  e  é a curvatura extrínseca,
onde  dá uma diferenciação covariante com respeito à métrica . DeWitt descreve que a lagrangiana "tem a forma clássica de 'energia cinética menos energia potencial', com a curvatura extrínseca desempenhando o papel da energia cinética e o oposto da curvatura intrínseca, o da energia potencial." Ainda que esta forma da lagrangiana é manifestamente invariante se redefinem-se a coordenadas espaciais, fazendo opaca a covariância geral.
Como as funções lapso e shift podem ser eliminadas por uma transformação de gauge, não representam graus físicos de liberdade. Isto se indica movendo-nos ao formalismo hamiltoniano pelo fato de seus momentos conjugados, respectivamente,  e , desaparecem de forma idêntica (on shell e off shell). Isto é o que Dirac chama limitações primárias. Uma eleição popular de gauge chamada gauge síncrono, é  e , ainda que, em princípio, pode ser eleita qualquer função das coordenadas. Neste caso, o hamiltoniano toma a forma
onde
 é o momento de conjugar a . As equações de Einstein podem ser recuperadas tomando colchetes de Poisson com o hamiltoniano. Limitações on-shell adicionais, chamadas limitações secundárias por Dirac, surgem da consistência da álgebra de Poisson. São  e . Esta é a teoria que está sendo quantizada em aproximações à gravidade quântica canônica.





as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].